Part Number Hot Search : 
L2203NS 13000 8HC908A MMBT440 MPX2700D HI3050 NATIONAL MAX6713Z
Product Description
Full Text Search
 

To Download V23990-K420-A40-0A-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-k420-a40-pm miniskiip? 3 pim 1200v/100a solderless interconnection trench fieldstop igbt4 technology industrial motor drives v23990-k420-a40-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v ma ximum junction temperature t j max 1 5 0 c t1,t2,t3,t4,t5,t6,t7 t sc t j =150c 10 s v cc v ge =15v 80 0 v dc forward current surge forward current power dissipation per diode i 2 t a w t j =t j max t h =80c m a ximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings c v v w a types i2t-value maximum ratings i fav a 2 s i fsm condition dc current d8,d9,d10,d11,d12,d13 p tot features miniskiip ? 3 housing target applications schematic gate-emitter peak voltage t j =t j max t p limited by t j max c o llector-emitter break down voltage repetitive peak collector current dc collector current v ce i cpulse i c a a 88 3 00 1200 20 198 t h =80c 17 5 t p =10ms t j =t j max 9 1 9 9 1250 t j =25c 50 0 t h =80c t h =80c copyright vincotech 1 revision: 2.1
v23990-k420-a40-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition d1,d2,d3,d4,d5,d6,d7 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12.7 mm min 12.7 mm clearance insulation voltage creepage distance t op operation temperature under switching condition - 40+(tjmax - 25) c storage temperature t stg -40+125 c t j = t j max t p limited by t j max a 7 0 3 00 t j =t j max t h =80c dc forward current a i f repetitive peak forward current re petitive peak reverse voltage power dissipation per diode v w i frm t j max v rrm 1200 ma ximum junction temperature c p tot t h =80c 14 4 175 copyright vincotech 2 revision: 2.1
v23990-k420-a40-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 0,97 1,35 tj=125c 0,88 tj=25c 0,85 tj=125c 0,71 tj=25c 0,0035 tj=125c 0,0047 tj=25c 0,1 tj=125c 1,1 thermal resistance chip to heatsink per chip r thjh 0,7 tj=25c 5 5,8 6,5 tj=150c tj=25c 1,6 1,92 2,2 tj=150c 2,33 tj=25c 0,12 tj=150c tj=25c 600 tj=150c tj=25c 204 tj=150c 216 tj=25c 35 tj=150c 42 tj=25c 296 tj=150c 384 tj=25c 78 tj=150c 112 tj=25c 7,83 tj=150c 12,12 tj=25c 5,72 tj=150c 9,25 thermal resistance chip to heatsink per chip r thjh 0,48 tj=25c 1,5 2,47 2,7 tj=150c 2,46 tj=25c 68,3 tj=150c 91,3 tj=25c 267 tj=150c 455 tj=25c 5,69 tj=150c 15,08 di(rec)max tj=25c 2761 /dt tj=150c 977 tj=25c 1,87 tj=150c 5,42 thermal resistance chip to heatsink per chip r thjh 0,66 v pf mws ns ns m a 6 150 800 405 rgon=4 thermal grease th i ckness 50 m =1w/mk 150 0 25 0 600 100 0,0038 100 integrated gate resistor t1,t2,t3,t4,t5,t6,t7 gate emitter threshold voltage col lector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current turn-on energy loss per pulse reverse recovered charge d1,d2,d3,d4,d5,d6,d7 15 100 1 5 r gon=4 20 15 r g off=4 600 a c mw s a/s 345 reverse current i r k/w v v ma 35 characteristic values forward voltage th reshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t d8,d9,d10,d11,d12,d13 value conditions input capacitance ou t put capacitance turn-off energy loss per pulse collector-emitter saturation voltage v ce(sat) i ces erec c oss r gint t f e on e off i rrm diode forward voltage gate charge 15 reverse recovery time reverse recovered energy peak rate of fall of recovery current c ies q rr t rr v f peak reverse recovery current reverse transfer capacitance t r t d(off) i ges t d(on) v ge(th) f=1mhz v ce =v ge c rss 0 0 1200 v nc 100 q gate v na tj=25c 7,5 tj=25c thermal grease thickness 50 m =1w/mk k/ w t hermal grease thickness 50 m =1w/mk k/ w copyright vincotech 3 revision: 2.1
v23990-k420-a40-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value co nditions e vincotech ntc reference 1,731*10-5 1/k2 7,635*10-3 1/k b-value b(25/100) tol. % t=25c t=25c a-value b(25/50) tol. % t=25c t=100c t=100c t=25c thermistor ? r/r r100=1670 rated resistance r pow er dissipation constant deviation of r100 mw/k r100 p 1670,313 3 -3 % 10 00 copyright vincotech 4 revision: 2.1
v23990-k420-a40-pm figure 1 t1,t2,t3,t4,t5,t6,t7 igbt figure 2 t1,t2,t3,t4,t5,t6,t7 igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 15 0 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 t1 , t2,t3,t4,t5,t6,t7 igbt figure 4 d1,d2,d3,d4,d5,d6,d7 fwd typical transfer characteristics typi cal diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ce = 1 0 v t1,t2,t3,t4,t5,t6,t7 / d1,d2,d3,d4,d5,d6,d7 typical output characteristics 0 50 100 150 200 250 300 0 1 2 3 4 5 v ce (v) i c (a) 0 20 40 60 80 100 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 2.1
v23990-k420-a40-pm figure 5 t1,t2,t3,t4,t5,t6,t7 igbt figure 6 t1,t2,t3,t4,t5,t6,t7 igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v ce = 60 0 v v ge = 1 5 v v ge = 1 5 v r gon = 4 i c = 10 0 a r goff = 4 figur e 7 t1 , t2,t3,t4,t5,t6,t7 igbt figure 8 t1,t2,t3,t4,t5,t6,t7 igbt typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v ce = 60 0 v v ge = 1 5 v v ge = 1 5 v r gon = 4 i c = 10 0 a t1,t2,t3,t4,t5,t6,t7 / d1,d2,d3,d4,d5,d6,d7 e on high t e off high t e on low t e off low t 0 5 1 0 1 5 20 25 30 0 50 100 150 200 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 5 10 15 20 25 30 0 4 8 12 16 20 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 1 , 5 3 4,5 6 7,5 0 50 100 150 200 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 1,5 3 4,5 6 7,5 0 4 8 12 16 20 r g ( w ) e (mws) copyright vincotech 6 revision: 2.1
v23990-k420-a40-pm figure 9 t1,t2,t3,t4,t5,t6,t7 igbt figure 10 t1,t2,t3,t4,t5,t6,t7 igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 1 5 0 c t j = 15 0 c v ce = 60 0 v v ce = 60 0 v v ge = 1 5 v v ge = 1 5 v r gon = 4 i c = 10 0 a r goff = 4 figur e 11 d1 , d2,d3,d4,d5,d6,d7 fwd figure 12 d1,d2,d3,d4,d5,d6,d7 fwd typical reverse recovery time as a typi cal reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at a t t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 10 0 a r gon = 4 v ge = 1 5 v t1,t2,t3,t4,t5,t6,t7 / d1,d2,d3,d4,d5,d6,d7 t doff t f t don t r 0,001 0 , 01 0,1 1 0 50 100 150 200 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0 0 , 2 0,4 0,6 0,8 0 4 8 12 16 20 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,001 0 , 01 0,1 1 0 4 8 12 16 20 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0 0, 2 0,4 0,6 0,8 0 50 100 150 200 i c (a) t rr ( m s) copyright vincotech 7 revision: 2.1
v23990-k420-a40-pm figure 13 d1,d2,d3,d4,d5,d6,d7 fwd figure 14 d1,d2,d3,d4,d5,d6,d7 fwd typical reverse recovery charge as a typi cal reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at a t at t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 10 0 a r gon = 4 v ge = 1 5 v figure 15 d1 , d2,d3,d4,d5,d6,d7 fwd figure 16 d1,d2,d3,d4,d5,d6,d7 fwd typical reverse recovery current as a typi cal reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at a t t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 10 0 a r gon = 4 v ge = 1 5 v t1,t2,t3,t4,t5,t6,t7 / d1,d2,d3,d4,d5,d6,d7 t j = t jmax - 25c i rrm t j = 25c i rrm 0 30 6 0 90 120 150 0 4 8 12 16 20 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 5 1 0 1 5 20 25 0 4 8 12 16 20 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 2 0 4 0 60 80 100 0 50 100 150 200 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 5 1 0 1 5 20 25 0 50 100 150 200 i c (a) q rr ( m c) copyright vincotech 8 revision: 2.1
v23990-k420-a40-pm figure 17 d1,d2,d3,d4,d5,d6,d7 fwd figure 18 d1,d2,d3,d4,d5,d6,d7 fwd typical rate of fall of forward typi cal rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) d i 0 / dt,di rec /dt = f(r gon ) at a t t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 10 0 a r gon = 4 v ge = 1 5 v figure 19 t1 , t2,t3,t4,t5,t6,t7 igbt figure 20 d1,d2,d3,d4,d5,d6,d7 fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at a t d = t p / t d = t p / t r thjh = 0, 48 k/w r thjh = 0, 66 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,08 1,1e+00 0,04 2,7e+00 0,21 1,8e-01 0,12 5,0e-01 0,13 6,5e-02 0,28 1,4e-01 0,05 1,0e-02 0,13 3,9e-02 0,00 1,2e-03 0,09 9,9e-03 t1,t2,t3,t4,t5,t6,t7 / d1,d2,d3,d4,d5,d6,d7 t p (s) z thjh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t j = t jmax - 25c di 0 /dt di r ec /dt high t di rec /dt t j = 25c 0 1 0 00 2000 3000 4000 5000 0 4 8 12 16 20 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 10 00 2000 3000 4000 5000 0 50 100 150 200 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 / dt copyright vincotech 9 revision: 2.1
v23990-k420-a40-pm figure 21 t1,t2,t3,t4,t5,t6,t7 igbt figure 22 t1,t2,t3,t4,t5,t6,t7 igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c v ge = 15 v figure 23 d1, d2,d3,d4,d5,d6,d7 fwd figure 24 d1,d2,d3,d4,d5,d6,d7 fwd power dissipation as a for w ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c t1,t2,t3,t4,t5,t6,t7 / d1,d2,d3,d4,d5,d6,d7 0 80 160 240 320 400 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) i c (a) 0 50 100 150 200 250 300 0 50 100 150 200 t h ( o c) p tot (w) 0 30 60 90 120 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 2.1
v23990-k420-a40-pm figure 25 t1,t2,t3,t4,t5,t6,t7 igbt figure 26 t1,t2,t3,t4,t5,t6,t7 igbt safe operating area as a function gat e voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at a t d = single pulse i c = 1 0 0 a t h = 80 oc v ge = 1 5 v t j = t jmax oc t1,t2,t3,t4,t5,t6,t7 / d1,d2,d3,d4,d5,d6,d7 v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 0 100 200 300 400 500 q g (nc) v ge (v) 240v 960v copyright vincotech 11 revision: 2.1
v23990-k420-a40-pm figure 1 d8,d9,d10,d11,d12,d13 diode figure 2 d8,d9,d10,d11,d12,d13 diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at a t t p = 2 5 0 s d = t p / t r thjh = 0, 7 k/w figure 3 d8 , d9,d10,d11,d12,d13 diode figure 4 d8,d9,d10,d11,d12,d13 diode power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc d8,d9,d10,d11,d12,d13 0 40 80 120 160 200 0 0,3 0,6 0,9 1,2 1,5 1,8 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 60 120 180 240 0 30 60 90 120 150 t h ( o c) p tot (w) 0 20 40 60 80 100 120 0 30 60 90 120 150 t h ( o c) i f (a) copyright vincotech 12 revision: 2.1
v23990-k420-a40-pm figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 1000 1 2 00 1400 1600 1800 2000 25 50 75 100 125 t (c) r/  copyright vincotech 13 revision: 2.1
v23990-k420-a40-pm t j 150 c r gon 4  r goff 4  figur e 1 ou t put inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = - 1 5 v v ge (0%) = -1 5 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 60 0 v v c (100%) = 60 0 v i c (100%) = 10 0 a i c (100%) = 10 0 a t doff = 0 , 38  s t don = 0, 22  s t eoff = 0, 75  s t eon = 0, 58  s figure 3 out put inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 60 0 v v c (100%) = 60 0 v i c (100%) = 10 0 a i c (100%) = 10 0 a t f = 0 , 11  s t r = 0, 04  s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -50 - 2 0 10 40 70 100 130 160 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 0,85 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 1 00 150 200 250 2,8 2,95 3,1 3,25 3,4 3,55 3,7 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 4 0 60 80 100 120 140 0,25 0,3 0,35 0,4 0,45 0,5 0,55 time (us) % v ce i c t f i c10% i c 90% -5 0 0 50 100 150 200 250 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % tr v ce ic copyright vincotech 1 4 r evision: 2.1
v23990-k420-a40-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 60 ,10 kw p on (100%) = 60 ,10 kw e off (100%) = 9, 25 mj e on (100%) = 12 ,12 mj t eoff = 0, 75 s t eon = 0, 58 s figure 7 ou t put inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turn- off switching waveforms & definition of t rr v geoff = -1 5 v v d (100%) = 60 0 v v geon = 15 v i d (100%) = 10 0 a v c (100%) = 60 0 v i rrm (100%) = -9 1 a i c (100%) = 10 0 a t rr = 0, 46 s q g = 5 9 7,46 nc switching definitions output inverter i c 1% v ge 90% -30 - 1 0 10 30 50 70 90 110 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 0,85 time (us) % p off e off t eoff u ce3% u ge10% -30 1 0 5 0 90 130 170 210 2,85 3 3,15 3,3 3,45 3,6 3,75 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -100 0 100 200 300 400 500 600 qg (nc) vge (v) i rrm 10% i rrm 90% i rrm 100% trr -120 -80 -40 0 40 80 120 2,8 3 3,2 3,4 3,6 3,8 4 time(us) % id vd fitted copyright vincotech 1 5 r evision: 2.1
v23990-k420-a40-pm figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 1 0 0 a p rec (100%) = 60 ,10 kw q rr (100%) = 15 ,08 c e rec (100%) = 5, 42 mj t qrr = 0, 91 s t erec = 0, 91 s switching definitions output inverter t qrr -150 - 1 00 -50 0 50 100 150 2,8 3,1 3,4 3,7 4 4,3 4,6 time(us) % id q rr -20 0 20 40 60 80 100 120 2,8 3,1 3,4 3,7 4 4,3 4,6 time(us) % p rec erec te rec copyright vincotech 1 6 r evision: 2.1
v23990-k420-a40-pm version ordering code in datamatrix as in packaging barcode as with std lid (black v23990-k32-t-pm) v23990-k420-a40-/0a/-pm k420a40 k420a40-/0a/ with std lid (black v23990-k32-t-pm) and p12 v23990-k420-a40-/1a/-pm k420a40 k420a40-/1a/ with thin lid (white v23990-k33-t-pm) v23990-k420-a40-/0b/-pm k420a40 k420a40-/0b/ with thin lid (white v23990-k33-t-pm) and p12 v23990-k420-a40-/1b/-pm k420a40 k420a40-/1b/ outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 17 revision: 2.1
v23990-k420-a40-pm disclaimer l i fe support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 18 revision: 2.1


▲Up To Search▲   

 
Price & Availability of V23990-K420-A40-0A-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X